Jessica Schießl
Jessica Schießl
seit 05/2021 |
Research Assistant at the Research and Teaching Unit for School Education and Instructional Research at the Friedrich-Alexander-University Erlangen-Nuremberg in the project „Persönliches transparentes KI-basiertes Portfolio für die Lehrerbildung – PetraKIP“ |
08/2019 bis 03/2021 |
Student Assistant at the Institute for Learning Innovation
Friedrich-Alexander University Erlangen-Nuremberg |
10/2018 bis 07/2019 |
Student Assistant at the Chair of Empirical Educational Research
Friedrich-Alexander University Erlangen-Nuremberg |
04/2018 bis 03/2021 |
Friedrich-Alexander University Erlangen-Nuremberg
Extension studies in Didactics of German as a Second Language |
04/2018 bis 10/2020 |
Friedrich-Alexander University Erlangen-Nuremberg
Educational Science-Empirical Educational Research Master’s thesis: „Entwicklung und Erprobung eines Kategoriensystems für die digitale Hochschullehre“ |
04/2018 bis 06/2019 |
Preparation, implementation and feedback of qualitative interim evaluations of courses
Office for Quality Management of the Faculty of Humanities and Department of Theology Friedrich-Alexander University Erlangen-Nuremberg |
11/2017 bis 02/2018 |
Lecturer for German courses
Eurolingua Academy, Röthenbach an der Pegnitz |
10/2013 bis 03/2018 |
Friedrich-Alexander University Erlangen-Nuremberg
University studies: German for teaching at primary schools (didactic subjects: maths, history, art) Degree: 1st state examination, Bachelor of Education Bachelor’s thesis: „Grund- und Stützpunktvorstellungen von Vorschulkindern im Bereich der Längen“ |
Research interests:
2023
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Evaluating Reflective Writing in Pre-Service Teachers: The Potential of a Mixed-Methods Approach. Education Sciences. https://doi.org/10.3390/educsci13121213
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artifcial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-023-00420-7
2023
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., Gläser-Zikuda, M., Solopova, V.,... Witte, S. (2023). AI-powered automatic feedback on reflective writing. In Proceedings of the European Teacher Education Network (ETEN) “Teacher Education – Connecting Glocal”. Nuremberg.
- Martin, I., Pösse, L., Schießl, J., Baumgart, K., & Gläser-Zikuda, M. (2023). Datengestützte Schulentwicklung zur Reduzierung von Schulentfremdung und Schulabbruch. In Tagungsband Netzwerktagung der empiriegestützten Schulentwicklung (EMSE). Berlin, DE.
- Zhang, C., Solopova, V., Romeike, R., Gläser-Zikuda, M., Benzmüller, C., Landgraf, T.,... Witte, S. (2023). PetraKIP: Personal transparency AI-based portfolio for teacher education. Poster presentation at Annual Conference of the European Teacher Education Network (ETEN) “Teacher Education – Connecting Glocal”, Nuremberg.
- Zhang, C., Gläser-Zikuda, M., Hofmann, F., Schießl, J., & Plößl, L. (2023). Portfolio-based reflective writings in teacher education - Results of a mixed methods study. Paper presentation at Gesellschaft für Empirische Bildungsforschung (GEBF) 2023, Universität Duisburg-Essen, Essen, Germany.
- Zhang, C., Plößl, L., Schießl, J., Hofmann, F., & Gläser-Zikuda, M. (2023). Portfolio-based reflective writings in teacher education - results of a mixed methods study. Poster presentation at Annual Conference of the European Teacher Education Network (ETEN) “Teacher Education – Connecting Glocal”, Nuremberg.
- Pösse, L., Martin, I., Schießl, J., Velling, H., Nowak, M., & Gläser-Zikuda, M. (2023). School development for preventing school alienation and dropout. In Proceedings of the European Teacher Education Network (ETEN) Conference. Nuremberg, DE.
2022
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2022). Akzeptanz von künstlicher Intelligenz (KI) bei angehenden Lehrkräften – eine Frage des Geschlechts? In Sektionstagung der Arbeitsgruppe empirische pädagogische Forschung (AEPF) in der Deutschen Gesellschaft für Erziehungswissenschaft (DGfE) (S. 49-49). Stuttgart, DE.
- Zhang, C., Schießl, J., Hofmann, F., Plößl, L., & Gläser-Zikuda, M. (2022). Pre-service teachers’ acceptance of Artificial Intelligence. Paper presentation at EARLI SIG 11 Conference 2022, Oldenburg, DE.
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2022). Quality of pre-service teachers’ reflections – a mixed-method study. Paper presentation at Reflexion in der Lehrkräftebildung: empirisch - phasenübergreifend - interdisziplinär, Berlin (Online).
- Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2022). Reflexives Schreiben und Reflexionsqualität von Lehramtsstudierenden - eine Mixed-Methods-Studie. Paper presentation at Sektionstagung der Arbeitsgruppe empirische pädagogische Forschung (AEPF) in der Deutschen Gesellschaft für Erziehungswissenschaft (DGfE), Stuttgart, DE.
- Persönliches transparentes KI-basiertes Portfolio für die LehrerInnenbildung – PetraKIP.
(Speech / Talk)
16 January 2023, Event: Vorstandssitzung des Zentrums für LehrerInnenbildung der Friedrich-Alexander-Universität Erlangen-Nürnberg, ZfL,
-
Formative Assessment for Universities: Strategic Application of Innovative Methods to Raise Study Success Rates
(Third Party Funds Single)
Term: 1 October 2025 - 30 September 2031
Funding source: Stiftungen
URL: https://www.faustairs.fau.de/The FAUstairs project aims to improve academic success. The new teaching architecture developed and implemented as part of the project focuses on promoting learning and subject-specific skills, which are central components of FAU’s internal definition of academic success. Innovative and AI-supported formative and summative assessments are designed to support students in developing these skills. In addition, data-based modelling of FAU degree programmes is being used to develop a privacy-compliant monitoring system that allows the learning behaviour of students to be analysed, thus facilitating appropriate educational responses on the part of teachers or the learning environment. Educational and technical innovations are intertwined to create a holistic, competence-oriented teaching and learning environment.A key component of the FAUstairs teaching architecture is formative assessment, which enables targeted feedback to be given to students during their studies and courses. This feedback helps students to deepen their understanding of the subject matter and develop their skills systematically. Continuous feedback and reflection on their own learning process promotes the acquisition of skills, with the learning process itself – both in terms of self-regulation by learners and adaptive adjustment of teaching by lecturers – becoming increasingly central.FAUstairs aims to highlight the considerable need for innovation in the area of assessment at all levels, to exploit existing scope for action, to identify potential challenges and to develop solutions together with relevant stakeholders, including the Bavarian State Ministry of Science and the Arts. The success of the project is continuously monitored and evaluated using various parameters, in particular, study success rates. FAUstairs is based on three central pillars::- Educational innovation: Establishment of an assessment lab for the development and testing of innovative assessment formats
- Technical innovation: Establishment of AI-supported digital twins for data collection and processing
- Organisational development and integration into FAU structures: Sustainable anchoring of the new teaching architecture through targeted organisational development and integration into the FAU IT ecosystem
-
Wissenschaftliche Prozessbegleitung zur Prävention von Schulentfremdung
(Third Party Funds Single)
Term: 1 November 2022 - 30 June 2025
Funding source: Europäische Union (EU) -
Verbundprojekt: Persönliches transparentes KI-basiertes Portfolio für die Lehrerausbildung - PetraKIP; Teilvorhaben: Evaluation eines KI-basierten Professionalisierungs-Portfolio (EvaKIP)
(Third Party Funds Single)
Term: 1 March 2021 - 31 August 2024
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)